NSWER KEY Name: [printed]

"On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work."

[signature]

1

Exam II, March 6, 2014, 100 pts Polymer Chemistry, CHEM 466, Spring 2014 Texas A&M University, College Station, TX, USA

1. For the reaction of the epoxy components shown below, draw the chemical structure for the

- crosslinked network product (8 points) and calculate the gel point (reminder: $p_c = 2/f_{av}$ and $f_{av} =$ $\frac{\Sigma Nifi}{\Sigma Ni}$ for a stoichiometric balance of functional groups) (8 points). Tube 1: Tube 2 O-CH₂-CH-CH₂O-,Q Ho-OHO of HO-X10 NH cambo of xlinks + unreacted alcohol + is organate functionalities 0} 10 etteroto-
- Stoichiometry $IA_{10} + 5B_2$ $= \sqrt[3]{f_{av}} = \frac{1 \cdot 10 + 5 \cdot 2}{1 + 5} = 3.3$ N $\Rightarrow P_c = \frac{2}{3.3} = 0.6 = 60\%$ conversion to reach gel pt.

Name: ANSWER KEY [printed]

- 2. For the hyperbranched polyester structure shown below:
 - (a) provide a retrosynthetic analysis (don't forget to draw any retrosynthetic arrows needed for your answer) (4 points);
 - (b) label each type of repeat unit, and also draw circles around the chain ends, triangles around the dendritic units, rectangles around the linear units, and a double circle around the focal point (8 points);
 - (c) calculate the degree of branching (ignore the focal point group for this calculation) (4 points).

Name: ANSNER KEY [printed]

3. The dendritic structures shown below were synthesized by Lee *et al.* (Lee, C.; Gillies, E. R.; Fox, M. E.; Gillaudeu, S. J.; Fréchet, J. M. J.; Dy, E. E.; Szoka, F. *Proc. Nat. Acad Sci.* 2006, *103*, 16649-16654) in order to produce a complex drug delivery system for the treatment of cancer. The 4th generation dendron, which comprises the right side of the structure on the left side of the page, was synthesized in a convergent manner that was finalized by attachment to and deprotection of the core, to afford a 4th generation arm (right side of page). The 3rd generation dendron (left side of the structure on the left side of the page) was then grown from the prefabricated 4th generation arm in a divergent manner. Provide a retrosynthetic analysis for the construction of the 3rd generation dendron (left side of dendritic structure). You should work back to the 4th generation dendron as shown below. [12 points]

4. The following questions are related to the reaction of polylactide with ethanol in the presence of TBD as an organocatalyst, as shown below and reported in F. A. Leibfarth *et al. J. Polym. Sci., Part A: Polym. Chem.* **2012**, *50*, 4814-4822.

Name: ANSWER KEY

[printed]

(a) Explain what is being observed (in terms of what is occurring chemically) by the series of GPC traces shown below, from a reaction of polylactide with 3n molar equivalents of ethanol and 0.01n TBD. [4 points]

(b) Label each of the four GPC traces (either at the legend or on the traces directly) with the <u>reaction</u> time at which it would have been acquired, as t = 0, x, y, and z, where <u>reaction</u> time increases from 0 < x < y < z. [8 points]</p>

Name: ANSWER KEY [printed]

5

(c) Draw a schematic illustration of the components that comprise a GPC system. [14 points]

(d) Indicate the parameter that determines the retention time that a molecule experiences during analysis by GPC, how the magnitude of the value for that parameter affects the retention time, and why. [6 points]

and why. [6 points] hydrodynamic volume, Vh; as Vh increases, retention time decreases; larger molecules are excluded from higher #'s of pores so diffuse into + out of

(e) Given the ¹H NMR spectrum below, calculate the average degree of polymerization, m. A few ferver notes: there are 2 inset spectra that are simply expanded views of regions of the entire spectrum pore integration values are given below each set of peaks; there are multiple signals (sets of peaks) for reside each type of proton of the structure, so please review carefully the assignments that are made on in the structure; recall the reaction that generated this sample—it makes the problem a bit tricky. [8 clumn points]

Name: ANSWER KEY [printed]

5. (a) Provide an electron arrow-pushing mechanism for the polymerization of styrene under the conditions given below, and give the final polymer structure. Label the initiation, propagation and termination steps. [10 points]

(b) On the basis of your assessment of whether this polymerization would ideally proceed as a stepgrowth or chain-growth polymerization and with or without control, draw the expected profile for DP_n vs. % monomer conversion on the axes below. [2 points]

(c) Given that $\Delta H = -73$ kJ/mol and $\Delta S = -0.104$ kJ/K·mol, would this polymerization be thermodynamically favorable at -78 C? Show your calculations. [4 points]

-78 °C = 195.15 K

 $\Delta 6 = \Delta H - T \Delta S$ = -73 kJ/mol - (195.15 K) (-0.104 kJ/K.mol) =-53 kJ/mol SG is - We i. polym 6 is thermodynamically favored

Equations, which may be of use:

Number-average molecular weight:

$$M_n = \frac{\Sigma N_x M_x}{\Sigma N_x}$$

 $N_x = \#$ moles of polymer chains having molecular weight, M_x

Weight-average molecular weight:

$$M_{w} = \Sigma w_{x} M_{x} = \frac{\Sigma N_{x} M_{x}^{2}}{\Sigma N_{x} M_{x}}$$

 w_x = wt fraction of polymer chains having molecular weight, $M_x=\frac{N_xM_x}{\Sigma N_xM_x}$

Degree of polymerization:

$$DP_n = \frac{1}{1-c}$$
c = extent of conversion of functional groups

$$DP_n = \frac{[monomer]_0 \cdot \% \text{ monomer conversion}}{[initiator]_0 \cdot f}$$

Polydispersity index:

$$PDI = \frac{M_w}{M_n}$$

Critical extent of reaction:

Average degree of monomer functionality:

$$f_{av} = \frac{\Sigma N_i f_i}{\Sigma N_i}$$

 $p_c = \frac{2}{f_{av}}$

Degree of branching:

 $DB = \frac{\# \text{ dendritic units} + \# \text{ chain ends}}{\# \text{ dendritic units} + \# \text{ chain ends} + \# \text{ linear units}}$

Gibbs free energy change:

$$\Delta G = \Delta H - T \Delta S$$

Textbook:

Hiemenz, P. C.; Lodge, T. P. *Polymer Chemistry*, 2nd Edition; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007