Name: \qquad [printed]
"On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work."
\qquad [signature]
Exam II, March 6, 2014, 100 pts
Polymer Chemistry, CHEM 466, Spring 2014
Texas A\&M University, College Station, TX, USA

1. For the reaction of the epoxy components shown below, draw the chemical structure for the
 $\frac{\Sigma N i f i}{\Sigma N i}$ for a stoichiometric balance of functional groups) (8 points).

Tube 1:

Tube 2:

clinks
t wureected alcohol + is cyanate functionalities
stoichiometry

$$
\begin{aligned}
& 1 A_{10}+5 B_{2} \\
& \Rightarrow f_{a v}=\frac{1 \cdot 10+5 \cdot 2}{1+5}=3 . \overline{3}
\end{aligned}
$$

$$
p_{c}=\frac{2}{3.3}=0.6=60 \% \text { conversion to reach gel pt. }
$$

Name: ANSWIR KEY _[printed]
2. For the hyperbranched polyester structure shown below:
(a) provide a retrosynthetic analysis (don't forget to draw any retrosynthetic arrows needed for your answer) (4 points);
(b) label each type of repeat unit, and also draw circles around the chain ends, triangles around the dendritic units, rectangles around the linear units, and a double circle around the focal point (8 points);
(c) calculate the degree of branching (ignore the focal point group for this calculation) (4 points).

3. The dendritic structures shown below were synthesized by Lee et al. (Lee, C.; Gillies, E. R.; Fox, M. E.; Gillaudeu, S. J.; Fréchet, J. M. J.; Dy, E. E.; Szoka, F. Proc. Nat. Acad Sci. 2006, 103, 1664916654) in order to produce a complex drug delivery system for the treatment of cancer. The $4^{\text {th }}$ generation dendron, which comprises the right side of the structure on the left side of the page, was synthesized in a convergent manner that was finalized by attachment to and deprotection of the core, to afford a $4^{\text {th }}$ generation arm (right side of page). The $3^{\text {rd }}$ generation dendron (left side of the structure on the left side of the page) was then grown from the prefabricated $4^{\text {th }}$ generation arm in a divergent manner. Provide a retrosynthetic analysis for the construction of the $3^{\text {rd }}$ generation dendron (left side of dendritic structure). You should work back to the $4^{\text {th }}$ generation dendron as shown below. [12 points]

Name: \qquad [printed]
4. The following questions are related to the reaction of polylactide with ethanol in the presence of TBD as an organocatalyst, as shown below and reported in F. A. Leibfarth et al. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 4814-4822.

(a) Explain what is being observed (in terms of what is occurring chemically) by the series of GPC traces shown below, from a reaction of polylactide with 3 n molar equivalents of ethanol and 0.01 n
TBD. [4 points] TBD. [4 points] depolymerization by erganocatalyzed transestentication reactions

(b) Label each of the four GPC traces (either at the legend or on the traces directly) with the reaction time at which it would have been acquired, as $t=0, x, y$, and z, where reaction time increases from $0<x<y<z$. [8 points]
(c) Draw a schematic illustration of the components that comprise a GPC system. [14 points]

(d) Indicate the parameter that determines the retention time that a molecule experiences during analysis by GPC, how the magnitude of the value for that parameter affects the retention time, and why. [6 points]
hydrodynamic volume, V_{h}; as V_{h} increases, retention time decreases; larger molecules are gxduded from higher \#'s of pores, so diffuse
(e) Given the 'H NMR spectrum below, calculate the average degree of polymerization, M. A few to + out of notes: there are 2 inset spectra that are simply expanded views of regions of the entire spectrum fewer (note the scale to identify the regions); integrals are not drawn on the spectrum, rather the pore Y integration values are given below each set of peaks; there are multiple signals (sets of peaks) for reside each type of proton of the structure, so please review carefully the assignments that are made on in the the structure; recall the reaction that generated this sample-it makes the problem a bit tricky. [8 colum r points]

5. (a) Provide an electron arrow-pushing mechanism for the polymerization of styrene under the conditions given below, and give the final polymer structure. Label the initiation, propagation and termination steps. [10 points]

Initiation

(b) On the basis of your assessment of whether this polymerization would ideally proceed as a stepgrowth or chain-growth polymerization and with or without control, draw the expected profile for DP_{n} vs. \% monomer conversion on the axes below. [2 points]

(c) Given that $\Delta H=-73 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}=-0.104 \mathrm{~kJ} / \mathrm{K} \cdot \mathrm{mol}$, would this polymerization be thermodynamically favorable at $-78^{\circ} \mathrm{C}$? Show your calculations. [4 points]

$$
-78^{\circ} \mathrm{C}=195.15 K
$$

$$
\begin{aligned}
\Delta G & =\Delta H-T \Delta S \\
& =-73 \mathrm{~kJ} / \mathrm{mol}-(195.15 \mathrm{~K})(-0.104 \mathrm{~kJ} / \mathrm{K} \cdot \mathrm{~mol}) \\
& =-53 \mathrm{~kJ} / \mathrm{mol} \quad \begin{array}{r}
\Delta G \text { is }-1 \mathrm{ke}, \therefore \text { colon } \\
\text { is thumudgranicily favored }
\end{array}
\end{aligned}
$$

Equations, which may be of use:

Number-average molecular weight:

$$
M_{n}=\frac{\Sigma N_{x} M_{x}}{\Sigma N_{x}}
$$

$$
\mathrm{N}_{\mathrm{x}}=\# \text { moles of polymer chains having molecular weight, } \mathrm{M}_{\mathrm{x}}
$$

Weight-average molecular weight:

$$
M_{w}=\Sigma w_{x} M_{x}=\frac{\sum N_{x} M_{x}^{2}}{\sum N_{x} M_{x}}
$$

$w_{x}=w t$ fraction of polymer chains having molecular weight, $M_{x}=\frac{N_{x} M_{x}}{\sum N_{x} M_{x}}$
Degree of polymerization:

$$
\begin{gathered}
\mathrm{DP}_{\mathrm{n}}=\frac{1}{1-\mathrm{c}} \\
\mathrm{c}=\text { extent of conversion of functional groups } \\
\mathrm{DP}_{\mathrm{n}}=\frac{[\text { monomer }]_{0} \cdot \% \text { monomer conversion }}{[\text { initiator }]_{0} \cdot \mathrm{f}}
\end{gathered}
$$

Polydispersity index:

$$
\mathrm{PDI}=\frac{\mathrm{M}_{\mathrm{w}}}{\mathrm{M}_{\mathrm{n}}}
$$

Critical extent of reaction:

$$
\mathrm{p}_{\mathrm{c}}=\frac{2}{\mathrm{f}_{\mathrm{av}}}
$$

Average degree of monomer functionality:

$$
\mathrm{f}_{\mathrm{av}}=\frac{\sum \mathrm{N}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}}{\sum \mathrm{~N}_{\mathrm{i}}}
$$

Degree of branching:

$$
\text { DB }=\frac{\text { \# dendritic units }+ \text { \# chain ends }}{\text { \# dendritic units + \# chain ends + \# linear units }}
$$

Gibbs free energy change:

$$
\Delta G=\Delta H-T \Delta S
$$

Textbook:

Hiemenz, P. C.; Lodge, T. P. Polymer Chemistry, $2^{\text {nd }}$ Edition; CRC Press, Taylor \& Francis Group: Boca Raton, FL, USA, 2007

